extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C7⋊D4)⋊1C22 = C24.27D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):1C2^2 | 448,943 |
(C2×C7⋊D4)⋊2C22 = D4×D28 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):2C2^2 | 448,1002 |
(C2×C7⋊D4)⋊3C22 = D28⋊23D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):3C2^2 | 448,1003 |
(C2×C7⋊D4)⋊4C22 = D4⋊5D28 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):4C2^2 | 448,1007 |
(C2×C7⋊D4)⋊5C22 = C42⋊17D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):5C2^2 | 448,1013 |
(C2×C7⋊D4)⋊6C22 = C24.56D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):6C2^2 | 448,1039 |
(C2×C7⋊D4)⋊7C22 = D7×C22≀C2 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 56 | | (C2xC7:D4):7C2^2 | 448,1041 |
(C2×C7⋊D4)⋊8C22 = C24.33D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):8C2^2 | 448,1044 |
(C2×C7⋊D4)⋊9C22 = C24.34D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):9C2^2 | 448,1045 |
(C2×C7⋊D4)⋊10C22 = C24.35D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):10C2^2 | 448,1046 |
(C2×C7⋊D4)⋊11C22 = C24.36D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):11C2^2 | 448,1048 |
(C2×C7⋊D4)⋊12C22 = D7×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):12C2^2 | 448,1057 |
(C2×C7⋊D4)⋊13C22 = C14.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):13C2^2 | 448,1058 |
(C2×C7⋊D4)⋊14C22 = C14.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):14C2^2 | 448,1060 |
(C2×C7⋊D4)⋊15C22 = D28⋊19D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):15C2^2 | 448,1062 |
(C2×C7⋊D4)⋊16C22 = C14.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):16C2^2 | 448,1063 |
(C2×C7⋊D4)⋊17C22 = C14.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):17C2^2 | 448,1073 |
(C2×C7⋊D4)⋊18C22 = C14.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):18C2^2 | 448,1106 |
(C2×C7⋊D4)⋊19C22 = C4⋊C4⋊28D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):19C2^2 | 448,1109 |
(C2×C7⋊D4)⋊20C22 = C14.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):20C2^2 | 448,1110 |
(C2×C7⋊D4)⋊21C22 = C14.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):21C2^2 | 448,1119 |
(C2×C7⋊D4)⋊22C22 = C42⋊18D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):22C2^2 | 448,1127 |
(C2×C7⋊D4)⋊23C22 = D28⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):23C2^2 | 448,1129 |
(C2×C7⋊D4)⋊24C22 = C42⋊20D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):24C2^2 | 448,1131 |
(C2×C7⋊D4)⋊25C22 = D7×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):25C2^2 | 448,1167 |
(C2×C7⋊D4)⋊26C22 = C42⋊26D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):26C2^2 | 448,1168 |
(C2×C7⋊D4)⋊27C22 = D28⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):27C2^2 | 448,1170 |
(C2×C7⋊D4)⋊28C22 = C24.41D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):28C2^2 | 448,1258 |
(C2×C7⋊D4)⋊29C22 = C24.42D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):29C2^2 | 448,1259 |
(C2×C7⋊D4)⋊30C22 = C14.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):30C2^2 | 448,1282 |
(C2×C7⋊D4)⋊31C22 = C14.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):31C2^2 | 448,1283 |
(C2×C7⋊D4)⋊32C22 = D7×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 56 | 8+ | (C2xC7:D4):32C2^2 | 448,1379 |
(C2×C7⋊D4)⋊33C22 = D14.C24 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | 8- | (C2xC7:D4):33C2^2 | 448,1380 |
(C2×C7⋊D4)⋊34C22 = C2×C22⋊D28 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):34C2^2 | 448,940 |
(C2×C7⋊D4)⋊35C22 = C2×D14⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):35C2^2 | 448,942 |
(C2×C7⋊D4)⋊36C22 = C23⋊3D28 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):36C2^2 | 448,946 |
(C2×C7⋊D4)⋊37C22 = C42⋊12D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):37C2^2 | 448,1000 |
(C2×C7⋊D4)⋊38C22 = C24⋊2D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):38C2^2 | 448,1042 |
(C2×C7⋊D4)⋊39C22 = C24⋊3D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):39C2^2 | 448,1043 |
(C2×C7⋊D4)⋊40C22 = D28⋊20D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):40C2^2 | 448,1065 |
(C2×C7⋊D4)⋊41C22 = C14.1212+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):41C2^2 | 448,1107 |
(C2×C7⋊D4)⋊42C22 = C2×C28⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):42C2^2 | 448,1243 |
(C2×C7⋊D4)⋊43C22 = C2×C23⋊D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):43C2^2 | 448,1252 |
(C2×C7⋊D4)⋊44C22 = C2×C28⋊2D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):44C2^2 | 448,1253 |
(C2×C7⋊D4)⋊45C22 = D4×C7⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):45C2^2 | 448,1254 |
(C2×C7⋊D4)⋊46C22 = C2×Dic7⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):46C2^2 | 448,1255 |
(C2×C7⋊D4)⋊47C22 = C2×C28⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):47C2^2 | 448,1256 |
(C2×C7⋊D4)⋊48C22 = C24⋊7D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):48C2^2 | 448,1257 |
(C2×C7⋊D4)⋊49C22 = C2×C24⋊D7 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):49C2^2 | 448,1293 |
(C2×C7⋊D4)⋊50C22 = C22×D4×D7 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):50C2^2 | 448,1369 |
(C2×C7⋊D4)⋊51C22 = C22×D4⋊2D7 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4):51C2^2 | 448,1370 |
(C2×C7⋊D4)⋊52C22 = C2×D4⋊6D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):52C2^2 | 448,1371 |
(C2×C7⋊D4)⋊53C22 = C2×D7×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):53C2^2 | 448,1375 |
(C2×C7⋊D4)⋊54C22 = C2×D4⋊8D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4):54C2^2 | 448,1376 |
(C2×C7⋊D4)⋊55C22 = C14.C25 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | 4 | (C2xC7:D4):55C2^2 | 448,1378 |
(C2×C7⋊D4)⋊56C22 = C22×C4○D28 | φ: trivial image | 224 | | (C2xC7:D4):56C2^2 | 448,1368 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C7⋊D4).1C22 = C23⋊C4⋊5D7 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | 8- | (C2xC7:D4).1C2^2 | 448,274 |
(C2×C7⋊D4).2C22 = C23⋊D28 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 56 | 8+ | (C2xC7:D4).2C2^2 | 448,275 |
(C2×C7⋊D4).3C22 = C23.5D28 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | 8- | (C2xC7:D4).3C2^2 | 448,276 |
(C2×C7⋊D4).4C22 = D7×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 56 | 8+ | (C2xC7:D4).4C2^2 | 448,277 |
(C2×C7⋊D4).5C22 = C24⋊D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 56 | 4 | (C2xC7:D4).5C2^2 | 448,566 |
(C2×C7⋊D4).6C22 = C22⋊C4⋊D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | 4 | (C2xC7:D4).6C2^2 | 448,587 |
(C2×C7⋊D4).7C22 = C24.30D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).7C2^2 | 448,947 |
(C2×C7⋊D4).8C22 = C24.31D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).8C2^2 | 448,948 |
(C2×C7⋊D4).9C22 = C42⋊10D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).9C2^2 | 448,980 |
(C2×C7⋊D4).10C22 = C42.96D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).10C2^2 | 448,984 |
(C2×C7⋊D4).11C22 = C42.99D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).11C2^2 | 448,987 |
(C2×C7⋊D4).12C22 = C42.100D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).12C2^2 | 448,988 |
(C2×C7⋊D4).13C22 = C42.104D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).13C2^2 | 448,993 |
(C2×C7⋊D4).14C22 = Dic14⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).14C2^2 | 448,1006 |
(C2×C7⋊D4).15C22 = D4⋊6D28 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).15C2^2 | 448,1008 |
(C2×C7⋊D4).16C22 = C42⋊16D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).16C2^2 | 448,1009 |
(C2×C7⋊D4).17C22 = C42.113D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).17C2^2 | 448,1011 |
(C2×C7⋊D4).18C22 = C42.115D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).18C2^2 | 448,1014 |
(C2×C7⋊D4).19C22 = C42.116D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).19C2^2 | 448,1015 |
(C2×C7⋊D4).20C22 = C42.117D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).20C2^2 | 448,1016 |
(C2×C7⋊D4).21C22 = C42.119D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).21C2^2 | 448,1018 |
(C2×C7⋊D4).22C22 = C24⋊4D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).22C2^2 | 448,1047 |
(C2×C7⋊D4).23C22 = C28⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).23C2^2 | 448,1049 |
(C2×C7⋊D4).24C22 = C14.682- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).24C2^2 | 448,1050 |
(C2×C7⋊D4).25C22 = Dic14⋊20D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).25C2^2 | 448,1052 |
(C2×C7⋊D4).26C22 = C14.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).26C2^2 | 448,1054 |
(C2×C7⋊D4).27C22 = C4⋊C4⋊21D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).27C2^2 | 448,1059 |
(C2×C7⋊D4).28C22 = C14.722- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).28C2^2 | 448,1061 |
(C2×C7⋊D4).29C22 = C14.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).29C2^2 | 448,1064 |
(C2×C7⋊D4).30C22 = C14.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).30C2^2 | 448,1066 |
(C2×C7⋊D4).31C22 = C14.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).31C2^2 | 448,1067 |
(C2×C7⋊D4).32C22 = C14.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).32C2^2 | 448,1068 |
(C2×C7⋊D4).33C22 = C14.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).33C2^2 | 448,1069 |
(C2×C7⋊D4).34C22 = C14.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).34C2^2 | 448,1070 |
(C2×C7⋊D4).35C22 = C14.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).35C2^2 | 448,1072 |
(C2×C7⋊D4).36C22 = C14.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).36C2^2 | 448,1074 |
(C2×C7⋊D4).37C22 = C22⋊Q8⋊25D7 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).37C2^2 | 448,1077 |
(C2×C7⋊D4).38C22 = C4⋊C4⋊26D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).38C2^2 | 448,1080 |
(C2×C7⋊D4).39C22 = C14.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).39C2^2 | 448,1096 |
(C2×C7⋊D4).40C22 = C14.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).40C2^2 | 448,1097 |
(C2×C7⋊D4).41C22 = C14.572+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).41C2^2 | 448,1098 |
(C2×C7⋊D4).42C22 = C14.582+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).42C2^2 | 448,1099 |
(C2×C7⋊D4).43C22 = C14.262- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).43C2^2 | 448,1100 |
(C2×C7⋊D4).44C22 = C14.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).44C2^2 | 448,1101 |
(C2×C7⋊D4).45C22 = C4⋊C4.197D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).45C2^2 | 448,1102 |
(C2×C7⋊D4).46C22 = D7×C22.D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).46C2^2 | 448,1105 |
(C2×C7⋊D4).47C22 = C14.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).47C2^2 | 448,1111 |
(C2×C7⋊D4).48C22 = C14.832- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).48C2^2 | 448,1113 |
(C2×C7⋊D4).49C22 = C14.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).49C2^2 | 448,1114 |
(C2×C7⋊D4).50C22 = C14.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).50C2^2 | 448,1115 |
(C2×C7⋊D4).51C22 = C14.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).51C2^2 | 448,1116 |
(C2×C7⋊D4).52C22 = C14.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).52C2^2 | 448,1117 |
(C2×C7⋊D4).53C22 = C14.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).53C2^2 | 448,1118 |
(C2×C7⋊D4).54C22 = C14.862- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).54C2^2 | 448,1120 |
(C2×C7⋊D4).55C22 = C42.233D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).55C2^2 | 448,1121 |
(C2×C7⋊D4).56C22 = C42.137D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).56C2^2 | 448,1122 |
(C2×C7⋊D4).57C22 = C42.138D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).57C2^2 | 448,1123 |
(C2×C7⋊D4).58C22 = D7×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).58C2^2 | 448,1126 |
(C2×C7⋊D4).59C22 = C42.141D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).59C2^2 | 448,1128 |
(C2×C7⋊D4).60C22 = Dic14⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).60C2^2 | 448,1130 |
(C2×C7⋊D4).61C22 = C42⋊21D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).61C2^2 | 448,1132 |
(C2×C7⋊D4).62C22 = C42.234D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).62C2^2 | 448,1133 |
(C2×C7⋊D4).63C22 = C42.143D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).63C2^2 | 448,1134 |
(C2×C7⋊D4).64C22 = C42.144D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).64C2^2 | 448,1135 |
(C2×C7⋊D4).65C22 = C42⋊22D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).65C2^2 | 448,1136 |
(C2×C7⋊D4).66C22 = C42.145D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).66C2^2 | 448,1137 |
(C2×C7⋊D4).67C22 = C42.160D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).67C2^2 | 448,1155 |
(C2×C7⋊D4).68C22 = C42⋊23D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).68C2^2 | 448,1157 |
(C2×C7⋊D4).69C22 = C42⋊24D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).69C2^2 | 448,1158 |
(C2×C7⋊D4).70C22 = C42.189D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).70C2^2 | 448,1159 |
(C2×C7⋊D4).71C22 = C42.161D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).71C2^2 | 448,1160 |
(C2×C7⋊D4).72C22 = C42.162D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).72C2^2 | 448,1161 |
(C2×C7⋊D4).73C22 = C42.163D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).73C2^2 | 448,1162 |
(C2×C7⋊D4).74C22 = C42.164D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).74C2^2 | 448,1163 |
(C2×C7⋊D4).75C22 = C42⋊25D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).75C2^2 | 448,1164 |
(C2×C7⋊D4).76C22 = C42.165D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).76C2^2 | 448,1165 |
(C2×C7⋊D4).77C22 = C42.238D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).77C2^2 | 448,1169 |
(C2×C7⋊D4).78C22 = Dic14⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).78C2^2 | 448,1171 |
(C2×C7⋊D4).79C22 = C42.168D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).79C2^2 | 448,1172 |
(C2×C7⋊D4).80C22 = C42⋊28D14 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).80C2^2 | 448,1173 |
(C2×C7⋊D4).81C22 = C14.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).81C2^2 | 448,1277 |
(C2×C7⋊D4).82C22 = C14.1082- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).82C2^2 | 448,1286 |
(C2×C7⋊D4).83C22 = C2×C23.1D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).83C2^2 | 448,488 |
(C2×C7⋊D4).84C22 = (C2×D28)⋊13C4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | 4 | (C2xC7:D4).84C2^2 | 448,540 |
(C2×C7⋊D4).85C22 = C42.276D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).85C2^2 | 448,930 |
(C2×C7⋊D4).86C22 = C42.277D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).86C2^2 | 448,932 |
(C2×C7⋊D4).87C22 = C2×Dic7⋊4D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).87C2^2 | 448,938 |
(C2×C7⋊D4).88C22 = C24.24D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).88C2^2 | 448,939 |
(C2×C7⋊D4).89C22 = C2×D14.D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).89C2^2 | 448,941 |
(C2×C7⋊D4).90C22 = C2×Dic7.D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).90C2^2 | 448,944 |
(C2×C7⋊D4).91C22 = C2×C22.D28 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).91C2^2 | 448,945 |
(C2×C7⋊D4).92C22 = C14.2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).92C2^2 | 448,960 |
(C2×C7⋊D4).93C22 = C14.2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).93C2^2 | 448,963 |
(C2×C7⋊D4).94C22 = C14.52- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).94C2^2 | 448,966 |
(C2×C7⋊D4).95C22 = C14.112+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).95C2^2 | 448,967 |
(C2×C7⋊D4).96C22 = C14.62- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).96C2^2 | 448,968 |
(C2×C7⋊D4).97C22 = C42.188D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).97C2^2 | 448,975 |
(C2×C7⋊D4).98C22 = C42.91D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).98C2^2 | 448,976 |
(C2×C7⋊D4).99C22 = C42⋊8D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).99C2^2 | 448,977 |
(C2×C7⋊D4).100C22 = C42⋊9D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).100C2^2 | 448,978 |
(C2×C7⋊D4).101C22 = C42.92D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).101C2^2 | 448,979 |
(C2×C7⋊D4).102C22 = C42.93D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).102C2^2 | 448,981 |
(C2×C7⋊D4).103C22 = C42.94D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).103C2^2 | 448,982 |
(C2×C7⋊D4).104C22 = C42.95D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).104C2^2 | 448,983 |
(C2×C7⋊D4).105C22 = C42.97D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).105C2^2 | 448,985 |
(C2×C7⋊D4).106C22 = C42.98D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).106C2^2 | 448,986 |
(C2×C7⋊D4).107C22 = C4×D4⋊2D7 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).107C2^2 | 448,989 |
(C2×C7⋊D4).108C22 = C42.102D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).108C2^2 | 448,991 |
(C2×C7⋊D4).109C22 = C4×D4×D7 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).109C2^2 | 448,997 |
(C2×C7⋊D4).110C22 = C42⋊11D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).110C2^2 | 448,998 |
(C2×C7⋊D4).111C22 = C42.108D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).111C2^2 | 448,999 |
(C2×C7⋊D4).112C22 = C42.228D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).112C2^2 | 448,1001 |
(C2×C7⋊D4).113C22 = D28⋊24D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).113C2^2 | 448,1004 |
(C2×C7⋊D4).114C22 = Dic14⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).114C2^2 | 448,1005 |
(C2×C7⋊D4).115C22 = C42.229D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).115C2^2 | 448,1010 |
(C2×C7⋊D4).116C22 = C42.114D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).116C2^2 | 448,1012 |
(C2×C7⋊D4).117C22 = C42.118D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).117C2^2 | 448,1017 |
(C2×C7⋊D4).118C22 = Dic14⋊19D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).118C2^2 | 448,1051 |
(C2×C7⋊D4).119C22 = C14.1152+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).119C2^2 | 448,1071 |
(C2×C7⋊D4).120C22 = C14.162- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).120C2^2 | 448,1081 |
(C2×C7⋊D4).121C22 = C14.172- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).121C2^2 | 448,1082 |
(C2×C7⋊D4).122C22 = D28⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).122C2^2 | 448,1083 |
(C2×C7⋊D4).123C22 = D28⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).123C2^2 | 448,1084 |
(C2×C7⋊D4).124C22 = Dic14⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).124C2^2 | 448,1085 |
(C2×C7⋊D4).125C22 = Dic14⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).125C2^2 | 448,1086 |
(C2×C7⋊D4).126C22 = C14.1182+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).126C2^2 | 448,1088 |
(C2×C7⋊D4).127C22 = C14.522+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).127C2^2 | 448,1089 |
(C2×C7⋊D4).128C22 = C14.532+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).128C2^2 | 448,1090 |
(C2×C7⋊D4).129C22 = C14.202- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).129C2^2 | 448,1091 |
(C2×C7⋊D4).130C22 = C14.212- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).130C2^2 | 448,1092 |
(C2×C7⋊D4).131C22 = C14.222- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).131C2^2 | 448,1093 |
(C2×C7⋊D4).132C22 = C14.232- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).132C2^2 | 448,1094 |
(C2×C7⋊D4).133C22 = C14.772- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).133C2^2 | 448,1095 |
(C2×C7⋊D4).134C22 = C14.822- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).134C2^2 | 448,1108 |
(C2×C7⋊D4).135C22 = C14.622+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).135C2^2 | 448,1112 |
(C2×C7⋊D4).136C22 = C2×C23.23D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).136C2^2 | 448,1242 |
(C2×C7⋊D4).137C22 = C24.72D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).137C2^2 | 448,1244 |
(C2×C7⋊D4).138C22 = C14.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).138C2^2 | 448,1269 |
(C2×C7⋊D4).139C22 = C14.452- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).139C2^2 | 448,1270 |
(C2×C7⋊D4).140C22 = (C2×C28)⋊15D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 112 | | (C2xC7:D4).140C2^2 | 448,1281 |
(C2×C7⋊D4).141C22 = C14.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).141C2^2 | 448,1284 |
(C2×C7⋊D4).142C22 = (C2×C28)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).142C2^2 | 448,1285 |
(C2×C7⋊D4).143C22 = C14.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).143C2^2 | 448,1287 |
(C2×C7⋊D4).144C22 = C2×D4.10D14 | φ: C22/C2 → C2 ⊆ Out C2×C7⋊D4 | 224 | | (C2xC7:D4).144C2^2 | 448,1377 |
(C2×C7⋊D4).145C22 = C4×C4○D28 | φ: trivial image | 224 | | (C2xC7:D4).145C2^2 | 448,927 |
(C2×C7⋊D4).146C22 = C14.82+ 1+4 | φ: trivial image | 224 | | (C2xC7:D4).146C2^2 | 448,957 |
(C2×C7⋊D4).147C22 = C14.102+ 1+4 | φ: trivial image | 224 | | (C2xC7:D4).147C2^2 | 448,964 |
(C2×C7⋊D4).148C22 = C2×C4×C7⋊D4 | φ: trivial image | 224 | | (C2xC7:D4).148C2^2 | 448,1241 |
(C2×C7⋊D4).149C22 = Q8×C7⋊D4 | φ: trivial image | 224 | | (C2xC7:D4).149C2^2 | 448,1268 |
(C2×C7⋊D4).150C22 = C2×Q8.10D14 | φ: trivial image | 224 | | (C2xC7:D4).150C2^2 | 448,1374 |